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The stochastic alpha–beta–rho (SABR) model is widely used in fixed income and foreign exchange
markets as a benchmark. The underlying process may hit zero with a positive probability and there-
fore an absorbing boundary at zero should be specified to avoid arbitrage opportunities. However,
a variety of numerical methods choose to ignore the boundary condition to maintain the tractabil-
ity. This paper develops a new principle of not feeling the boundary to quantify the impact of this
boundary condition on the distribution of underlying prices. It shows that the probability of the
SABR hitting zero decays to 0 exponentially as the time horizon shrinks. Applying this principle,
we further show that conditional on the volatility process, the distribution of the underlying process
can be approximated by that of a time-changed Bessel process with an exponentially negligible error.
This discovery provides a theoretical justification for many almost exact simulation algorithms for
the SABR model in the literature. Numerical experiments are also presented to support our results.

Keywords: SABR model; Probability of hitting zero; Principle of not feeling the boundary;
Time-changed Bessel process

JEL Classification: C63, G13

1. Introduction

The stochastic alpha–beta–rho (SABR) model introduced in
Hagan et al. (2002) has become very popular with practition-
ers in interest rate and foreign exchange markets for valuing
European-style options. It can produce analytical asymp-
totic expressions for implied volatility, fitting the observed
smile reasonably well and capturing the correct co-movement
between the smile dynamics and the underlying asset price.

The model is a special class of stochastic volatility mod-
els. In particular, its underlying process is given by a constant
elasticity of variance (CEV) type diffusion and its volatility
process follows a geometric Brownian motion. Exactly due
to this structural feature, one can show that the underlying
process may hit zero with positive probability.† Therefore,
we have to specify an absorbing boundary condition at zero

*Corresponding author. Email: yangnian@nju.edu.cn
† For example, if the correlation is zero and the parameter ‘beta’ is
less than 1/2 (see the SDE (1) for the SABR model), then the mass
at zero is positive.

to avoid arbitrage opportunities (see, e.g. Delbaen and Shi-
rakawa 2002, Rebonato and McKay 2009). However, some
intensively used approximate formulas for the Black model
implied volatility given by SABR, such as those in Hagan et
al. (2002), Obłój (2008), and Paulot (2015), were derived by
simply ignoring the boundary condition for the pricing partial
differential equation (PDE) system to maintain mathemati-
cal tractability. This therefore poses one interesting research
problem upon us: how should we quantify the impact of the
boundary condition?

To address this issue, we manage to develop a principle of
not feeling the boundary in this paper. It shows that the prob-
ability of the SABR model hitting zero decays exponentially
as the time horizon shrinks. Furthermore, the convergence rate
of this hitting probability to zero largely depends on the mod-
elling parameters: it becomes faster for a model with larger
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initial underlying price or beta (i.e. the index of the CEV
component of the SABR model) or smaller initial volatility
or the volatility of volatility. To the best of our knowledge,
we characterize the exponentially decaying order of hitting
probability for the first time.

Early works on the principle of not feeling the boundary
can be traced back to Kac (1951) and Varadhan (1967), where
the authors investigated the case of diffusions on Euclidean
space generated by the second order, uniformly elliptic opera-
tors with Hölder continuous coefficients. Hsu (1995) extended
the discussion to diffusions on a more general manifold. In
terms of its financial applications, Gatheral et al. (2012) use
the principle to explain why the boundary behaviour of local
volatility models will not affect the asymptotic expansions of
the transition density and the European call price written on
it. This paper contributes to this literature because we are the
first to present a rigorous characterization about the exponen-
tially decaying order of the hitting probability in the case of
the SABR, one important class of stochastic volatility mod-
els. We also note there are several works relating to this topic.
For instance, Doust (2012) computed the probability of hitting
zero via Monte–Carlo simulations. Bayer et al. (2013) cited
this principle without any rigorous establishment to argue
for the validity of their computational method in the SABR
model. Gulisashvili et al. (2016) derived the formula of the
hitting probability for the normal SABR model when the time
horizon tends to infinity. For the uncorrelated SABR model,
Gulisashvili et al. (2018) derived the behaviour of the atom at
the origin for short and large times; they also referred to the
small hitting probability for large initial values as the principle
in a numerical example, but without indicating the decaying
order. Using the PDE-based method, Yang and Wan (2018)
obtained asymptotic formulas with a polynomial error bound
for the survival probability (i.e. the probability of not hitting a
nonnegative lower boundary) by solving a hierarchy of PDEs.
It is worth noting that Hagan et al. (2014) proposed a numeri-
cal scheme to solve a simplified one-dimensional pricing PDE
for the SABR model by considering the boundary conditions
at zero.

Intuitively, our result implies that the specification of
boundary conditions will have a limited influence on the dis-
tributional law of the SABR model for a small time. That
explains why a variety of numerical methods for the SABR
model perform well for short-run option pricing, even though
they do not incorporate the boundary condition into consid-
eration. As the second layer of contributions to the literature,
the paper also develops some theoretical bounds on the bias of
some almost exact SABR simulation algorithms that recently
emerged in the literature (see, e.g. Chen and Liu 2011, Chen
et al. 2012, Cai et al. 2017, Leitao et al. 2017). This research
line of simulation stems from Islah (2009), in which the
author found that the marginal distribution of the underlying
price in SABR can be approximated by a noncentral chi-
square distribution conditional on the volatility process. This
approximation turns out to be quite accurate if we use it to
compute short-term option prices. Meanwhile, the aforemen-
tioned papers also report significant approximation error in the
simulated outcomes as the time horizon gets longer. Apply-
ing the principle of not feeling the boundary, we manage to
identify the cause of such error—the impact of the absorbing

boundary condition starts to kick in when we consider a long
time horizon. Along this line, we fill the gap in the existing lit-
erature by presenting an analysis that the approximation error
will be exponentially negligible as the time horizon shrinks.

The rest of this paper is organized as follows. Section 2
introduces the SABR model, followed by the main results
about the principle of not feeling the boundary. Some numeri-
cal evidences are also presented to support our discovery. All
the proofs are deferred to Section 3. We conclude the paper in
Section 4.

2. The SABR model and the main results

2.1. The SABR model

Let (�,F ,Ft, P) be a filtered probability space, where P is
the T-forward martingale measure. Two independent stan-
dard Brownian motions {Bt; 0 ≤ t ≤ T} and {Wt; 0 ≤ t ≤ T}
are defined on (�1,F1) and (�2,F2) with their natural fil-
trations {F1

t } and {F2
t }, respectively. Let the sample space

�, the σ -algebra F , and the filtration Ft be � = �1 ×�2,
F = F1 ⊗ F2, and Ft = F1

t ⊗ F2
t . Denote Ft and At to be

the forward price and volatility at time t ∈ [0, T], respectively.
The SABR model is then defined as a solution to the following
system of stochastic differential equations (SDEs):

dFt = AtF
β
t [
√

1 − ρ2dBt + ρdWt],

dAt = νAtdWt,
(1)

where the parameter beta β and the correlation correlation ρ
satisfy β ∈ (0, 1) and ρ ∈ (−1, 1), respectively; the forward
price F0, the initial volatility A0, and the volatility of volatility
ν are positive. It is a local stochastic volatility model, in which
the forward price process {Ft; 0 ≤ t ≤ T} follows a CEV-type
diffusion process and the dynamic of the volatility process
{At; 0 ≤ t ≤ T} is given by a geometric Brownian motion.

We need to specify the boundary condition at F = 0 for
SDE (1) in order to determine the existence and uniqueness
of the model, because the CEV-type dynamic specification in
F allows it to hit zero with positive probability. A reflecting
boundary will obviously lead to an arbitrage opportunity: one
can buy the forward at zero cost when it hits 0 and sell it
for profit when it reflects back to the positive region; refer
to Section 3.10 of Rebonato and McKay (2009) or Delbaen
and Shirakawa (2002) for a detailed discussion on the issue.
To rule out the arbitrage opportunity, we thus impose the
following assumption on the model from now on.

Assumption 2.1 0 is an absorbing boundary of {Ft; 0 ≤ t ≤
T}.

We show that the solution to equation (1) uniquely exists
under this assumption in Lemma 3.1.

2.2. The main results

Let

τF
0 = inf{t ∈ [0, T] : Ft = 0},
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the first time the forward price process hits zero. The first main
result of the paper establishes a probability bound on P(τF

0 ≤
T). More specifically, we have

Theorem 2.1 (Principle of Not Feeling the Boundary) Under
Assumption 2.1, there exists a positive constant C (depending
on ν, β, A0, F0) such that,

lim sup
T↓0

T ln P(τF
0 ≤ T) ≤ −C. (2)

In words, the theorem states that the probability of the event
that the forward price Ft hits 0 before T will vanish expo-
nentially as T tends to zero. Since the SABR model (1)
is a diffusion process changing its value continuously over
time, intuitively Theorem 2.1 implies that the existence of the
boundary at zero will not affect the probability law of Ft for
small time. In this sense, we refer to it as the principle of not
feeling the boundary.

It is worthwhile pointing out that using such principle to
quantify the impact of the boundary to the probability law
of a diffusion process is familiar to probabilists. Kac (1951)
pioneered the study for Brownian motion. Varadhan (1967)
considered the case of diffusion processes in a Euclidean
space generated by second order, uniformly elliptic operators.
Hsu (1995) extended the principle to diffusions on a gen-
eral manifold. One interesting application of the principle in
option pricing appeared in Gatheral et al. (2012), in which the
authors used it to obtain asymptotic expansions about the tran-
sitional probability function of a local volatility model and the
associated call option price.

Turn to the implications of Theorem 2.1 on the SABR
model. Define a function g(·) such that for F ≥ 0,

g(F) = F1−β

1 − β
.

Let Xt = g(Ft). Applying the local Itô formula (Kallen-
berg 1997, Corollary 15.20) up to the stopping time τF

0 , we
have

XT∧τF
0

= X0 + ρ

ν
(AT∧τF

0
− A0)+

√
1 − ρ2

∫ T∧τF
0

0
As dBs

+
∫ T∧τF

0

0

(1 − 2θ)(1 − ρ2)A2
s

2Xs
ds, (3)

with X0 = g(F0) and

θ = 1

2
+ β

2(1 − β)(1 − ρ2)
. (4)

Note that the function g defined above is invertible. We have
FT = FT∧τF

0
= g−1(XT∧τF

0
). To derive the probability law of

FT , it suffices to determine the probability law of XT∧τF
0

.
Along the sample path that satisfies τF

0 > T , the represen-
tation of X in equation (3) reduces to

XT = X0 + ρ

ν
(AT − A0)+

√
1 − ρ2

∫ T

0
As dBs

+
∫ T

0

(1 − 2θ)(1 − ρ2)A2
s

2Xs
ds. (5)

Conditioning on the volatility process {At; 0 ≤ t ≤ T}, the dis-
tribution law of XT given by equation (5) should be the same
as the marginal distribution of a time-changed Bessel process
of parameter (1 − 2θ)/2 at T, starting from X0 + ρ/ν(AT −
A0) and with the changed time clock (1 − ρ2)

∫ T
0 A2

s ds. Since
the probability of {τF

0 ≤ T} is exponentially negligible for
small time T according to Theorem 2.1, we expect that the
probability distribution of XT should provide a good approxi-
mation to the distribution of XT∧τF

0
.

Lemma 3.4 in Section 3 presents explicitly the cumula-
tive distribution function of a time-changed Bessel process in
terms of noncentral chi-square distributions. Inspired by all
the above observations, we introduce a new random variable
(r.v.) F̃T whose conditional distribution, given both the values
of AT and

∫ T
0 A2

s ds, satisfies

P

(
F̃T ≤ g(U)

∣∣∣∣
∫ T

0
A2

s ds, A0, AT

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − Q

(
g̃2(F0)

	
; 2θ ,

g2(U)

	

)
, U > 0;

1 − Q

(
g̃2(F0)

	
; 2θ

)
, U = 0,

(6)

for any U ≥ 0, where

	 = (1 − ρ2)

∫ T

0
A2

s ds (7)

and

g̃(F0) :=
(

X0 + ρ

ν
(AT − A0)

)+
=
(

g(F0)+ ρ

ν
(AT − A0)

)+
.

(8)
Here, Q(x;μ, λ) is the cumulative distribution function of a
noncentral chi-square random variable with degree of free-
dom μ and noncentrality λ. Q(x;μ) is its degenerate special
case when λ = 0.

The following theorem characterizes the error bound if we
use the aforementioned r.v. F̃T to build up an approximation
to the original model FT . More precisely, we have

Theorem 2.2 (Approximate Conditional Marginal Distribution)
Suppose Assumption 2.1 holds. For any Lipschitz function
h(·), there exists a positive constant C (depending on h, ν,
β, ρ, A0, F0) such that

lim sup
T↓0

T ln |E[h(FT ) | A0, F0]

−E

[
E

[
h(F̃T )

∣∣∣∣
∫ T

0
A2

s ds, AT

]∣∣∣∣A0, F0

]∣∣∣∣ ≤ −C. (9)

In equation (9), the first expectation E[h(FT ) | A0, F0] is taken
with respect to the original SABR model; the inner one in
the second iterated expectations is computed from the prob-
ability distribution given in equation (6) and the outer one is
taken with respect to the joint distribution of

∫ T
0 A2

s ds and AT .
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Roughly, we know from this theorem

∣∣∣∣E[h(FT ) | A0, F0] − E

[
E

[
h(F̃T )

∣∣∣∣
∫ T

0
A2

s ds, AT

]∣∣∣∣A0, F0

]∣∣∣∣
≤ exp(−C/T),

i.e. the difference of these two terms will vanish exponen-
tially as T → 0. Specifically, if the correlation is zero, i.e.
ρ = 0, then the difference of the above two expectations is
zero. Because the marginal distribution of the forward price
is exactly given by equation (6), which is an immediate con-
sequence of the results of Islah (2009), Cai et al. (2017), and
Leitao et al. (2017).

The iterated expectation in equation (9) can be evaluated
efficiently through Monte–Carlo simulation. To this end, we
may use the following three-step procedure:

Step 1 Given A0, simulate AT .
Step 2 Draw a sample of

∫ T
0 A2

s ds, given A0 and AT .

Step 3 Given A0, AT , and
∫ T

0 A2
s ds, simulate F̃T from the

distribution (6).

Several papers in the literature, including Chen and
Liu (2011), Cai et al. (2017), and Leitao et al. (2017), devel-
oped different simulation schemes to materialize these steps.
We include the detail of the algorithm presented in Cai et
al. (2017) in Appendix 1. All of these papers document the

accurate performance of the above approximation in numer-
ical experiments when it is used to compute option prices
written on the SABR model, especially for short-term options.
But none produces any theoretical guarantees. Theorem 2.2
fills the gap by showing that the approximation error in using
these Monte–Carlo simulation schemes to price short-term
options under the SABR model is exponentially negligible.

At the end of this subsection, we need to stress that the
discussion ahead of Theorem 2.2 is not rigorous. More strict
proofs of the two theorems in this subsection can be found in
Section 3.

2.3. Numerical evidences

In this subsection, we shall provide more numerical evi-
dences about the principle of not feeling the boundary and
its implications in option pricing. Note that equation (2) in
Theorem 2.1 implies that ln(P(τF

0 ≤ T)) is in proportion to
1/T. To numerically corroborate this discovery, figure 1 dis-
plays the relationship between the logarithm of the hitting
probability and the reciprocal of the maturity under differ-
ent values of initial forward price F0, beta, initial volatility
A0, and volatility of volatilities ν. The values of parameters
we use as the benchmark in this experiment are F0 = 0.1,
A0 = 0.2, β = 0.1, ν = 0.1, and ρ = −0.5, respectively. We
change the value of one parameter in each subfigure while
fixing the others. All the data points fall onto straight lines,

Figure 1. The linear relation between log(P(τF
0 ≤ T)) and 1/T under different values of F0, A0, β, and ν. The hitting probability of the

SABR model is computed from the finite-difference method, see Appendix 1 for more details.
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Figure 2. The relative errors of the simulation under different values
of F0, A0, and ν. Consider at-the-money call option. We fix β = 0.1
and ρ = −0.5 in all three subfigures. The other parameter values
used in this example are A0 = 0.3 and ν = 0.1 in (a), F0 = 0.1 and
ν = 0.1 in (b), F0 = 0.1 and A0 = 0.1 in (c), respectively. We com-
pute the benchmark price D using the finite-difference method in
Appendix 1. The simulation algorithm of Cai et al. (2017) is used
to generate Monte Carlo price S. The relative error is defined as
|S − D|/D. The number of simulation trials is 10,000.

strongly suggesting that the principle of not feeling the bound-
ary holds for the SABR model under a variety of parameter
values. Moreover, the slope of the lines, i.e., the constant on
the right-hand side of equation (2), characterizes how fast the
probability decays as T → 0. A clear pattern arises in figure 1
that P(τF

0 ≤ T) converges to 0 faster for the SABR model
with a larger initial forward price, larger beta, smaller initial
volatility, or smaller volatility of volatility.

Figure 2 shows the impact of the boundary on the option
pricing. Using the values computed from the finite-difference
method as the ‘true’ option price, we plot the relative error in
the computation of the simulation scheme presented in the last
subsection. For a given T, the error tends to be significant as
F0 → 0, A0 → +∞, or ν → +∞. This is consistent with the
conclusions from the two theorems in the last subsection. As
noted before, P(τF

0 ≤ T) becomes not negligible for a model
with small F0, large A0 or ν, and will lead to the failure of
the distribution approximation presented in Theorem 2.2. In
addition, through the comparison between T = 1/2 and T = 1,
we can see that the boundary condition should have a smaller
impact to the error of the simulation-based pricing schemes
for a shorter time horizon.

3. Proofs

This section provides proofs for Theorems 2.1 and 2.2. In
Section, 3.1 we present some technical lemmas for subsequent

analysis. The proofs for Theorems 2.1 and 2.2 are presented in
Sections 3.2, and 3.3, respectively. For convenience, we will
use the following notations throughout this section.

• C is a generic positive constant.
• C(�) is a generic positive constant depending on

the parameter vector � , which can be one or a
group of β, ν, F0, and so on. The explicit depen-
dence will be indicated in the following analysis.

3.1. Technical lemmas

Lemma 3.1 (Strong Solution up to Explosion) Under Assum-
ption 2.1, the SABR model (1) has a unique strong solution up
to the explosion time S, where S = inf{t > 0 : Ft = 0}.†

Proof Under Assumption 2.1, Lions and Musiela (2007)
and Hobson (2010) have proved that the equation system (1)
admits a unique weak solution up to the explosion. Moreover,
the solution to the SDE (1) exists in a strong sense. Note that
the diffusion coefficients are locally Lipschitz. We then have
strong uniqueness for the solution by simply following the
proof of Theorem 5.2.5 in Karatzas and Shreve (1991). There-
fore, the SDE (1) exists a strong solution up to explosion,
which is implied by the weak existence and strong uniqueness
(Karatzas and Shreve 1991, Corollary 5.3.23). �

Lemma 3.2 Consider the volatility process {At; 0 ≤ t ≤ T} in
the SABR model (1). Define

�
X0
T =

{
inf

s∈[0,T]

(
X0 + ρ

ν
(As − A0)

)
≤ 0

}
. (10)

Let Ca = νX0/ρA0 if ρ 
= 0. Then, for (i) ρ = 0, (ii) ρ > 0
and Ca ≥ 1, we have �X0

T = ∅; otherwise,

P(�
X0
T ) ≤ 1√

1 − Ca

ν
√

T

| ln(1 − Ca)| exp

(
− ln2(1 − Ca)

2ν2T

)
.

(11)

Proof We first consider the case ρ > 0. Note that As =
A0 exp(−ν2s/2 + Ws) for all s ∈ [0, T]. Then,

inf
s∈[0,T]

(X0 + ρ/ν(As − A0)) ≤ 0

⇐⇒ inf
s∈[0,T]

exp(−ν2s/2 + νWs)

≤ 1 − Ca.

If Ca ≥ 1, then�X0
T = ∅. Thus, the lemma holds obviously. If

0 < Ca < 1, then

�
X0
T =

{
inf

s∈[0,T]
(−νs/2 + Ws) ≤ ln(1 − Ca)

ν

}
.

This set corresponds to the event that a drifted Brown-
ian motion {−νs/2 + Ws : s ≥ 0} hits the level b := ln(1 −

† {Ft; 0 ≤ t ≤ T} has a finite moment (Andersen and Piterbarg 2007,
Lions and Musiela 2007) for β ∈ [0, 1), thus S = limn→∞{t > 0 :
Ft ≤ 1/n, or Ft ≥ n}.
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Ca)/ν < 0 before T. By the distribution of first passage times
of the drifted Brownian motion (Karatzas and Shreve 1991,
formula (3.5.12)), we have

P(�
X0
T ) =

∫ T

0

−b√
2πs3

exp

(
−b2 + νbs + ν2s2/4

2s

)
ds

≤
∫ T

0

−b√
2πs3

exp

(
−b2

2s

)
· exp

(
−νb

2

)
ds,

where the inequality is due to the fact that exp(−ν2s/8) ≤ 1.
Letting z = −b/

√
s, the above inequality yields that

P(�
X0
T ) ≤

√
2

π

1√
1 − Ca

∫ +∞

−b/
√

T
e−(1/2)z2

dz.

By the inequality in Problem 2.9.22 of Karatzas and
Shreve (1991), we have equation (11). A similar argument
applies to the case when ρ ≤ 0. �

Lemma 3.3 Consider the volatility process {At; 0 ≤ t ≤ T} in
the SABR model (1). Recall that	 = (1 − ρ2)

∫ T
0 A2

s ds in (7).
For arbitrary C0 > 	0 ≡ (1 − ρ2)A2

0T , then we have

P(	 ≥ C0) ≤ C1(ν
√

T) exp

(
− C2

ν2T

)
,

where C1 = 2
√

2/π/ln(C0/	0) and C2 = (ln(C0/	0))
2/8.

Proof Note that At = A0 exp(−ν2t + 2νWt) for t ∈ [0, T].
Then, we have

P(	 ≥ C0) = P

(∫ T

0
exp(−ν2t) exp(2νWt) dt ≥ C0T

	0

)

< P

(∫ T

0
exp(2ν sup

t∈[0,T]
Wt) dt ≥ C0T

	0

)
.

Therefore, using the density of the running maximum of
Brownian motion (Karatzas and Shreve 1991, formulas
(2.8.3)), we have

P(	 ≥ C0) ≤ P

(
sup

0≤t≤T
Wt ≥ 1

2ν
ln

(
c

	0

))

=
√

2

π

∫ ∞

ln(c/	0)/2ν
√

T
e−x2/2 dx

≤ C1(ν
√

T) exp

(
− C2

ν2T

)
.

The last inequality holds due to the formula (2.9.20) in
Karatzas and Shreve (1991). �

Lemma 3.4 (Time-changed Bessel process) For any given
deterministic positive continuous function ϕ : [0, T] →
(0, +∞), let

Yt = Y0 +
∫ t

0
ϕ(s) dBs +

∫ t

0

(1 − 2θ)ϕ2(s)

2Ys
ds, (12)

where Bt is a standard Brownian motion. For any fixed t> 0,
the transition density of Yt in equation (12), starting from

Y0 > 0, is given as follows:

pϕ(t; Y0, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y θ0 y1−θ∫ t
0 ϕ

2(s) ds
exp

(
− Y 2

0 + y2

2
∫ t

0 ϕ
2(s) ds

)

Iθ

(
Y0y∫ t

0 ϕ
2(s) ds

)
,

y > 0;

1

�(1 + θ)
�

(
θ ,

Y 2
0

2
∫ t

0 ϕ
2(s) ds

)
, y = 0;

(13)

where �(θ) = ∫∞
0 xθ−1 e−x dx, �(θ , z) = ∫∞

z xθ−1 e−x dx, and
Iθ (z) = ∑∞

m=0((z/2)
2m+θ /m!�(m + θ + 1)). Moreover, Yt

admits the following distribution function:

P(Yt ≤ y|Y0)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − Q

(
Y 2

0∫ t
0 ϕ

2(s)
; 2θ ,

y2∫ t
0 ϕ

2(s)

)
, y > 0;

1 − Q

(
Y 2

0∫ t
0 ϕ

2(s)
; 2θ

)
, y = 0,

(14)

where Q(x;μ, λ) is the cumulative distribution function of a
noncentral chi-square random variable with degree of free-
dom μ and noncentrality λ. Q(x;μ) is its degenerate special
case when λ = 0.

Proof Given any deterministic positive continuous function
ϕ : [0, T] → (0, +∞), note that the coefficients of the process
Y (cf. (12)), ϕ(s) and (1 − 2θ)ϕ2(s)/(2Ys), are locally Lips-
chitz in the space variable Ys when Ys > 0. Mimicking the
proof of Theorem 5.2.5 of Karatzas and Shreve (1991), then
we can easily show the strong uniqueness of the solution to
equation (12) up to the explosion time τ Y = {t ≥ 0 : Yt = 0}.
Let

φ(t) :=
∫ t

0
ϕ2(γ ) dγ and ψ(t) := inf{s > 0 : φ(s) > t}.

Since ϕ(·) is strictly positive and continuous, we know
that φ(t) and ψ(t) are both continuous and monotonously
increasing. Define Mt = ∫ ψ(t)

0 ϕ(γ ) dBγ . Note that 〈M , M 〉t =∫ ψ(t)
0 ϕ2(γ ) dγ = t. From Theorem 3.3.16 of Karatzas and

Shreve (1991), {Mt} is a Brownian motion with respect to the
filtration {FB

ψ(t) : t ∈ [0, T]}. Given Y0 > 0, we know that

Zt = Y0 + Mt +
∫ t

0

1 − 2θ

2Zs
ds (15)

is a Bessel process with dimension 2 − 2θ . Therefore, it is
well known that the weak solution to equation (15) exists up to
τ Z = inf{t ≥ 0 : Zt = 0}, and under the assumption that Z = 0
is an absorbing boundary for the process, its transition density
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should be given by

pZ(t, Z0, Zt)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y θ0 Z1−θ
t

t
exp

(
−Y 2

0 + Z2
t

2t

)
Iθ

(
Y0Zt

t

)
, Zt > 0;

1

�(1 + θ)
�

(
θ ,

Y 2
0

2t

)
, Zt = 0.

(16)

See Borodin and Salminen (2002) for detailed discussions on
the Bessel process.

Let Yt = Zφ(t) for any t ≥ 0. It is easy to see that

Yt = Y0 +
∫ t

0
ϕ(γ ) dBγ +

∫ t

0
(1 − 2θ)

ϕ2(γ )

2Yγ
dγ .

So far, we have shown the SDE (12) admits a weak solu-
tion. Combining with the strong uniqueness, we know that the
existence of strong solution to equation (12). Furthermore, by
equation (16), we can also see that the transition density of
Y is given by equation (13). Then, using (13), similar to the
arguments in Appendix 2 of Yang et al. (2017), we can derive
the cumulative distribution function in equation (14). �

In the remark below, we compare Lemma 3.4 with Section 4.3
of Yang and Wan (2018) as well as Results 2.2 and 2.4 of Chen
et al. (2012).

Remark 3.1 In Section 4.3 of Yang and Wan (2018), they
achieve a PDE with a small perturbation parameter, in which
the infinitesimal generator of a Bessel process is the lead-
ing order operator. Using the transition density of a Bessel
process, Yang and Wan (2018) solve a hierarchy of PDEs
to obtain the asymptotic formulas for the probability that
the forward price hits zero. Result 2.2 of Chen et al. (2012)
reviews the transition density for a squared Bessel process
(Borodin and Salminen 2002). Then, using Result 2.2, Chen
et al. (2012) arrive at Result 2.4, which is originated from
Islah (2009). However, the argument of Result 2.4, especially
equation (2.17), is not correct because they have overlooked
the stopping time τF

0 when applying Itô’s formula. Lemma 3.4
presents the probability density function and cumulative dis-
tribution function of a time-changed Bessel process. With the
help of Lemma 3.4, we then show in Theorem 2.2 that Result
2.4 of Chen et al. (2012) holds with an exponential negligible
error.

3.2. Proof of Theorem 2.1

Recall {Xt; 0 ≤ t ≤ T} defined in equation (3). Let ρ⊥ =√
1 − ρ2, and let τ0 = inf{t ∈ [0, T] : Xt = 0} be the first time

that the process {Xt; 0 ≤ t ≤ T} hits zero. Rewriting equation
(3), then we have

XT∧τ0 = X0 + ρ

ν
(AT∧τ0 − A0)+ ρ⊥

∫ T∧τ0

0
As dBs

+
∫ T∧τ0

0

(1 − 2θ)(ρ⊥As)
2

2Xs
ds. (17)

Given a sample path of {At(ω) : 0 ≤ t ≤ T} from

� :=
{
ω : inf

s∈[0,T]

(
X0 + ρ

ν
(As(ω)− A0)

)
> X̄0

}
, (18)

consider a new process {X̄t} satisfying the following SDE

X̄t = X̄0 + ρ⊥
∫ t

0
As dBs +

∫ t

0

(1 − 2θ)(ρ⊥As)
2

2X̄t
ds, (19)

where X̄0 ∈ (0, X0). The strong uniqueness and existence up to
τ0 for {Xt; 0 ≤ t ≤ T} is presented in Lemma 3.1. If we specify
an absorbing boundary at zero for the SDE (19), Lemma 3.4
indicates that {X̄t; 0 ≤ t ≤ T} must exist uniquely in a strong
sense up to τ̄0, where

τ̄0 = inf{t ∈ [0, T] : X̄t = 0}.

Conditional on � defined in equation (18), the initial point
X0 + ρ/ν(AT∧τ0 − A0) is larger than X̄0. Similar to the com-
parison principle (Karatzas and Shreve 1991, Proposition
5.2.18), we have that

XT∧τ0∧τ̄0 ≥ X̄T∧τ0∧τ̄0 . (20)

Therefore, conditional on �, we have that {τ0 ≤ T} ∩� ⊆
{τ̄0 ≤ T} ∩�. More precisely, on the event {τ0 ≤ T} ∩�,
if τ0 < τ̄0 for some sample paths, then by equation (20),
we have 0 = Xτ0 = XT∧τ0∧τ̄0 ≥ X̄T∧τ0∧τ̄0 = X̄τ0 > 0. Contra-
diction! This implies that

{τ0 ≤ T} ∩� = {τ0 ≤ T , τ0 ≥ τ̄0} ∩� ⊆ {τ̄0 ≤ T} ∩�.

Combining the above formula and the law of total probability,
we have

P(τ0 ≤ T) = P({τ0 ≤ T} ∩�)+ P(τ0 ≤ T |�c)P(�c)

≤ P(τ̄0 ≤ T)+ P(�c), (21)

where �c is the complementary set of � defined in equation
(18). From Lemma 3.2, we have

P(�c) ≤ 1{ρ 
=0}1{Ca<1}√
1 − Ca

ν
√

T

| ln(1 − Ca)| exp

(
− ln2(1 − Ca)

2ν2T

)
,

(22)
where Ca = ν(X0 − X̄0)/ρA0 if ρ 
= 0.

By Lemma 3.4, {X̄t; 0 ≤ t ≤ T} defined in equation (19) is
also a time-changed Bessel process. Moreover,

P(τ̄0 ≤ T) = E[�(θ , X̄ 2
0 /(2	))]

�(1 + θ)
.

Note that maxx>0 xα e−x is bounded for α > 0, then there
exists a positive constant C such that

�(θ , x) =
∫ ∞

x
zβ/(1−β)(1−ρ2)−1/2 e−z dz < Cx−1/2 e−Cx.
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Combining the above inequality with the Cauchy-Schwartz
inequality, then we have

P(τ̄0 ≤ T) <
E[C	1/2/X̄0 · exp(−CX̄ 2

0 /	)]

�(1 + θ)

≤ C(β)/X̄0

√
E[	]

√
E[exp(−CX̄ 2

0 /	)]

< C(β)/X̄0(A0

√
T eν

2T/2)(E[exp(−CX̄ 2
0 /	)

× (1{	>2	0} + 1{	≤2	0})])
1/2.

Furthermore, taking X̄0 = X0/2 and applying Lemma 3.3,
then we have

P(τ̄0 ≤ T) < C(β)/X0(A0

√
T eν

2T/2)(E[1{	>2	0}]

+ exp(−CX 2
0 (A

2
0T)−1))1/2

<C(β)/X0(A0

√
T eν

2T/2)(ν
√

T exp(−C(ν
√

T)−2)

+ exp(−CX 2
0 (A

2
0T)−1))1/2. (23)

Therefore, combining equations (21), (22), and (23), we
have

P(τ0 ≤ T) ≤ C1

√
T(1 + eν

2T/2(1 + ν
√

T)1/2) exp(−C2/T),
(24)

where

C1 = max

{
1{ρ 
=0}1{Ca<1}ν√

1 − Ca| ln(1 − Ca)|
,

C(β)A0

X0

}
,

C2 = min

{
ln2(1 − Ca)

4ν2
,

C

2ν2
,

CX0

2A2
0

}
,

and Ca = (νX0/2ρA0)1{ρ 
=0}.
Finally, taking logarithm on both sides of equation (24), we

have

lim sup
T↓0

T ln P(τ0 ≤ T) ≤ −C1,

where C1 = C(ν,β, A0, F0) is a positive constant. The proof
completes.

Remark 3.2 If β = 0, going through the above proof, we
find the derivations are still valid. Thus, the conclusion of
Theorem 2.1 still holds for the case β = 0. It is worth to note
that the last term on the right-hand side (equation (17)) dis-
appears, and Lemma 3.4 still holds without the drift term in
equation (12) in this case.

3.3. Proof of Theoremp 2.2

Recall the process Xt = g(Ft) defined in eqaution (17). Given
a path of {At(ω) : t ∈ [0, T]}, consider a new process {X̃t; 0 ≤
t ≤ T} on the probability space (�,F) to approximate X·∧τ0 .

X̃T =
(

X0 + ρ

ν
(AT − A0)

)+
+ (1 − ρ2)

∫ T

0
As dBs

+
∫ T

0

(1 − 2θ)(1 − ρ2)A2
s

2X̃s

ds. (25)

Note that our construction is feasible because the driving
Brownian motion Wt of the volatility process is independent

of Bt. Define F̃T := g−1(X̃T ). By Lemma 3.4, we know that
the distribution function of F̃T is given by equation (6).

We now use the distribution of F̃T = g−1(X̃T ) to approx-
imate the distribution of FT = g−1(Xτ0∧T ) determined by
equation (17). Note that the distributions of F̃T and FT are
exactly the same if the correlation is zero (see, e.g. Islah 2009,
Cai et al. 2017, Leitao et al. 2017). Therefore, we only need
to prove the approximation error (9) holds when ρ 
= 0.

Let Sn = inf{t ∈ [0, T] : Xt ≤ 1/n or Xt ≥ n}, S̃n = inf{t ∈
[0, T] : X̃t ≤ 1/n or X̃t ≥ n}, and σn = Sn ∧ S̃n. Moreover,
limn→∞ σn = τ0 ∧ τ̃0 where τ̃0 = inf{t ∈ [0, T] : X̃t = 0}.
Given a Lipschitz function h(·) : R+ → R+ and recalling
g(·) in equation (8), the composition h ◦ g−1(·) is a locally
Lipschitz function. Thus, we have

E[|h(FT )− h(F̃T )|] ≤ C(β, h)E[|XT − X̃T |1{σn>T}]

+ E[|h ◦ g−1(XT )− h ◦ g−1(X̃T )|1{σn≤T}]. (26)

Note that

E[|XT − X̃T |1{σn>T}] =
∫ T

0

(1 − ρ2)A2
t (1 − 2θ)

2

× E

[∣∣∣∣ 1

Xt
− 1

X̃t

∣∣∣∣ 1{σn>T}

]
dt

≤ (1 − 2θ)(1 − ρ2)n2

2

×
∫ T

0
A2

t E[|Xt − X̃t|1{σn>T}] dt.

By the Gronwall’s inequality, we have

E[|XT − X̃T | 1{σn>T}] = 0. (27)

Combining equations (26) and (27), and letting n → +∞, the
following inequality holds

E[|h(FT )− h(F̃T )|]
≤ E[|h ◦ g−1(XT )− h ◦ g−1(X̃T )|1{τ0∧τ̃0≤T}].

By the Lipschtiz property of h(·) and the definition of g(·) in
equation (8), we have

E[|h(FT )− h(F̃T )|] ≤ C(h)E[FT 1{τ0∧τ̃0≤T}]

+ C(β, h)E[X̃ 1/(1−β)
T 1{τ0∧τ̃0≤T}]. (28)

Recall the definition of θ in equation (4). Define p :=
2θ(1 − β) ≡ 1 + βρ2/(1 − ρ2) > 1 (ρ 
= 0), and let q satisfy
1/p + 1/q = 1. By the Hölder inequality, we have

E[FT 1{τ0∧τ̃0≤T}] ≤ (E[Fp
T ])1/pP(τ0 ∧ τ̃0 ≤ T)1/q

< C(β, ρ, F0)P(τ0 ∧ τ̃0 ≤ T)1/q, (29)

E[X̃ 1/(1−β)
T 1{τ0∧τ̃0≤T}] ≤ (E[X̃ 2θ

T ])1/pP(τ0 ∧ τ̃0 ≤ T)1/q. (30)

where the second inequality in equation (29) holds because
E[Fp

T ] < ∞ (Andersen and Piterbarg 2007, Proposition 5.1).
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Lemma 3.4 indicates that X̃T is a time-changed Bessel pro-
cess. Letting X̃0 = (X0 + (ρ/ν)(AT − A0))

+, then we have

E[X̃ 2θ
T ] = E

⎡
⎣∫ ∞

0
X̃ 2θ

T

X̃T

	

(
X̃0

X̃T

)θ
exp

(
− X̃ 2

0 + X̃ 2
T

2	

)

×Iθ

(
X̃0X̃T

	

)
dX̃T

]

= E

[
X̃ 2θ

0

∫ ∞

0

1

2

( z

λ

)θ/2
exp

(
−λ+ z

2

)

×Iθ
(√

zλ
)∣∣∣
λ=X̃ 2

0 /	
dz

]

= E[X̃ 2θ
0 ],

where the third equality holds due to the definition of a
noncentral chi-square distribution’s density function. Further-
more, by the Minkowski inequality, we have

E[X̃ 2θ
T ] = E

[((
X0 − ρA0

ν

)
+ ρ

ν
AT

)2θ
]

≤
(∣∣∣∣X0 − ρA0

ν

∣∣∣∣+ |ρ|
ν
(E[A2θ

T ])1/2θ
)2θ

< C(ν,β, ρ, A0, F0). (31)

Therefore, combining equations (28), (29), (30), and (31),
we have

E[|h(FT )− h(F̃T )|] ≤ C(β, ν, A0, F0, h)(P(τ0 ≤ T)

+ P(τ̃0 ≤ T))1/q. (32)

Noting the formulas (2) and (23) in Theorem 2.1 and its proof,
we have the conclusion in equation (9).

Remark 3.3 The conclusion in Theorem 2.2 stills holds if we
replace g̃(F0) = (g(F0)+ (ρ/ν)(AT − A0))

+ with g̃(F0) =
|g(F0)+ (ρ/ν)(AT − A0)|. This is because the probability
that g(F0)+ (ρ/ν)(AT − A0) ≤ 0 is exponentially negligible
for small T (see Lemma 3.2).

4. Conclusions

This paper develops the principle of not feeling the boundary
for the SABR model to quantify the impact of an absorb-
ing boundary at zero on its probability distribution and the
European option price. More precisely, we have the probabil-
ity of the SABR hitting zero decays to zero exponentially as
the time horizon tends to zero. With the help of the princi-
ple, we demonstrate that the distribution of the forward price
conditional on the volatility can be approximated by that of a
time-changed Bessel process with an exponentially negligible
error, which provides a theoretical justification for a variety
of almost exact simulation algorithms recently emerged in the
literature.
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Appendix 1. Exact simulation of the approximate
distribution

This subsection presents a method to simulate the sample path based
on the conditional approximate distribution given in Theorem 2.2.
Specifically, if F̃T is determined by the density in equation (6) con-
ditional on A0, AT , and 	, then the sample of F̃T can be generated
exactly. The algorithm for the exact simulation of the approximate
distribution is from Chen and Liu (2011) and Cai et al. (2017).

Step 1. Sampling from the distribution of AT , given A0. Recall
equation (1), then, we have

AT = A0 exp(− 1
2ν

2T + νWT )
d= A0 exp(− 1

2ν
2T + ν

√
TZ),

where Z follows from the standard normal distribution. Thus, we can
generate a standard normal random variable Z ∼ N (0, 1) instead of
AT .

Step 2. Sampling from Δ, given A0 and AT . A Laplace transform
inversion-based approach can be used to generate a sample from 	
conditional on A0 and AT (Chen and Liu 2011, Section 2.2.2; Cai
et al. 2017, Section 3.2). More precisely, let h(x) = (1 − ρ2)/x for
x> 0. Recall 	 defined in equation (7). Denote

Gh(y) := P(h(	) ≤ y | A0, AT )

≡ P

((∫ T

0
A2

t dt

)−1

≤ y

∣∣∣∣∣A0, AT

)
, y ≥ 0.

For ξ > 0, the Laplace transform of Gh(·) is given by (Matsumoto
and Yor 2005, Cai et al. 2017)

Ĝh(ξ) :=
∫

R+
e−ξyGh(y) dy

= 1

ξ
exp

(
−
φ2

ln(AT/A0)
(ξν2/A2

0)− ln2(AT/A0)

2ν2T

)
,

where φx(λ) = arg cosh(λ e−x + cosh(x)), and arg cosh(z) = ln(z +√
z2 − 1), cosh(z) = (ez + e−z)/2. Therefore, we can obtain the

function Gh(·) by numerically inverting the Laplace transform Ĝh(·)
via some algorithms such as Abate and Whitt (1992).

Generate a sample U ∼ U(0, 1) from the standard uniform distri-
bution. Find the root of the equation Gh(V ) = U . Then h−1(V ) =
(1 − ρ2)/V is a sample of 	 given A0 and AT .

Step 3. Sampling from the approximate distribution F̃T , given F0,
A0, AT , andΔ. Recall the approximate distribution of FT , conditional
on F0, A0, AT , and	, given by equation (6). Generate a sample U ∼
U(0, 1); if U ≤ 1 − Q( g̃2(F0)

	
; 2θ), then set F̃T = 0; otherwise, find

Û which solves

P(F̃T ≤ Û |	, A0, AT ) = 1 − Q

(
g̃2(F0)

	
; 2θ ,

g2(Û)

	

)
= U ,

and then set F̃T = Û .

Appendix 2. PDE for the survival probability and call
option price without arbitrage

Let τF
t := min{s ≥ t : Fs = 0}. Consider the following conditional

expectation with a payoff function h(·)
ϕh(t, f , a) = E[h(FT )1{τF

t >T} | Ft = f , At = a].

If h(F) = (F − K)+, then ϕh(t, f , a) corresponds to the price of a call
without arbitrage (Yang et al. 2017, equation (4)). If h(F) = 1, then
ϕh(t, f , a) denotes the probability that the forward price does not hit
0 before T, i.e. the survival probability.

Moreover, the function ϕh(t, f , a) is the solution to the following
PDE (Yang et al. 2017, Theorem 1; Yang and Wan 2018, Theorem
2.1):

∂ϕh

∂t
+ 1

2

(
a2f 2β ∂

2ϕh

∂f 2 + 2ρνa2f β
∂2ϕh

∂f ∂a
+ ν2a2 ∂

2ϕh

∂a2

)
= 0,

(A1)
with boundary and terminal conditions

ϕh(t, 0, a) = 0, ϕh(T , f , a) = h(f ). (A2)

To obtain the benchmark for the call option price and the hitting
(survival) probability, we numerically solve the PDE (equation (A1))
with boundary and terminal conditions (Equation (A2)). Specifically,
we use the Alternative Direction Implicit (ADI) algorithm proposed
by In ’t Hout and Foulon (2010) to solve the related PDE; We trun-
cate the region for (F, A) to [0, 2] × [0, 2] and discretize 2500 and
200 steps for the variable F and A, respectively. The number of steps
for time is 500. All the numerical experiments are run in an environ-
ment of Matlab R2017b and a PC desktop with Intel(R) Core(TM)2
Quad CPU Q9400@2.66GHZ.
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